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The process of non-steady-state transverse diffusion of a passive addi-
tive in a granular layer described by a cellular model is investigated.
The general results obtained in [1] are applied to an analysis of con-
crete transport processes of matter and heat in a granular layer. The
following four cell models are treated: (1) ideal mixing cells without
stagnation zones; (2) ideal mixing cells with stagnation Zones; (3) ideal
mixing cells with diffusive stagnation zones; (4) ideal mixing cells
with diffusive stagnation zones having a finite exchange rate between
the free volume and the stagnation zone. The conditions of applica-
bility for each of the above models are found. The time to establish
a normal distribution in the transveise diffusion process is determined
for all the models. This quantity is then connected with the physical
characteristics of transport processes of matter in a layer of non-
porous and porous particles, the transport of heat in a granular layer,
and the transport of matter in a layer of particles which adsorb an
additive.

1. GENERAL RESULTS

The process of transverse diffusion of a passive
additive in a granular layer was investigated in [1]. In
accordance with the model adopted there the layer is
treated as an aggregate of cells joined by channels.
The fluid or gas crossing the layer flows out of the
cells of each horizontal level into the cells of the fol -
lowing level in the direction of the flow, each time ex-
periencing a random transverse displacement by some
distance which is determined by the packing structure
of the layer. Each cell is characterized by some dif-
ferential distribution function of time spent in the cell
f{t), which in what follows will be called a micro-dis-
tribution, The form of the microdistribution, which
is determined by the physical processes inside the
cell, was not given a specific form in [1]. It was found
that the Laplace form for the probability of displace-
ment of additive particles by m cells in a direction
normal to the direction of the stream has the form
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Here g(p) is the characteristic function of the micro-
distribution. The function F;(t) in what follows is
called the macrodistribution. The basic characteris-
tics of the macrodistribution are its dispersion us(t)
and kurtosis coefficient Ex(t), which characterizes the
departure of the distribution from a normal law. In [1]
the following asymptotic formulas for these two quan-
tities were found:
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Here o are the coefficients in the series expansion
of the T'aylor function
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Formulas (1.2) are valid for times t > t;, while p;(Re p; < 0)isthe
zero of the function A(p) nearest to the imaginary axis. it followsfrom
the asymptotic formulas that as t - ° a normal distribution is estab-
lished with dispersion t/s, where s is the average time spent in a cell,
regardless of the form of the microdistribution, However, we cansay
nothing about the speed of establishing a normal distribution without
specifying the form of the function f(t) or A(p). In what follows, a
series of concrete models is treated, leading to specific forms of micro-
distribution functions, and at the same time the connection is estab-
lished between the parameters which appear in the general formulas
(1.2) and the physical characteristics of the granular layer and the
stream which flows through it.

2. INVESTIGATION OF THE MODELS

2.1°. Ideal mixing cells (model 1). The model with
cells of an ideal solution [2] is the simplest. For this
model the characteristic function of the microdistri-
bution and the macrodistribution function are speci-
fied by the formulas

@) =U+p9t,  Fu@®=I. (/97" (2.1)

Here I,,, is a modified Bessel function of the first
kind of order m. Formulas for the moments of the
microdistribution and the kurtosis coefficient may be
obtained directly from (2.1) as well as from expres-
sions (1.2). In the case under consideration these are
not asymptotic but exact formulas, since the charac-
teristic function (2.1) is nowhere equal to unity except
at the point p = 0. We have

B () =t/s, p@=¢/s+30/

Ex(t) =s/t. (2.2)

It is clear from (2.2) that a normal distribution is established for
times t > s. We notice that during a time t the front of the stream
manages to pass through n = t/s cells along the layer. In the case be-
ing considered a normal distribution in the transverse diffusion process
is established after n > 1 cells have been traversed. This is the maxi-
mum possible speed for approaching a normal law, since for times
t ~ s and lengths of the order of the cell dimension it is, in general,
meaningless to talk about a macrodistribution law,

2.2°. Ideal mixing cells with stagnation zones
{model 2). We shall consider a cell composed of two
regions, a free volume and a stagnation zone. The
flow of gas or fluid passes through the free volume of
the cell only. For Reynolds numbers which are not too
small (R = ul/y > 50, where u is the linear velocity of
the stream, ! is the characteristic dimension of the
cell or the diameter of a granule, and v is the kinemat-
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ic viscosity) the free volume of the cell may be taken
to be ideally mixed. The concentration of additive
(marker) c;, which is constant throughout the entire
free volume, and its variation with time is determined
by

de, | dt = ¢,/ t, — Io. (2.8)

Here t; is the average time spent in the free vol-
ume, equal to the ratio of the free volume to the vol-
ume rate of flow, I is the flow from the free volume
into the stagnation zone through their border, which is
of area o per unit free volume. Inthe model considered
here it is assumed that the concentration of marker in
the stagnation zone c; is independent of the spatial co-
ordinates and is a function of time only.

The model of stagnation zones has been proposed
previously in connection with the treatment of the
process of longitudinal diffusion [3]. The equations
and initial conditions for the concentrations ci, and ¢
have the form

de ¢ de.
- =—7;‘—°‘Q(01'—02)7 - = a(e—ca),

¢1(0) =VL1, e (0)=0. (2.4)

Here ¢ is the exchange rate constant between the
stagnation zone and the free volume, relative to the
volume of the stagnation zone V,, « is the ratio of the
stagnation zone volume V, to the free volume of the
cell V. The system of equations (2.4) may be golved to
find the distribution function f(t) for times spent by a
particle in a cell, which coincides with the function
ci{t) except for the normalizing factor Vi/ty. Calculat-
ing the characteristic micro-distribution function for
the given model we determine A (p)

A@) =pt+9" [p+g (o)
A(p)=0 for p,=0andp, =¢q( 4+ ). (2.5
Using (2.5} we have
a1=3=t0(1+a),
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Since the gquantities ¢4, o, and @3 are known from
formulas (1. 2) we can find agsymptotic exrressions for
the dispersion and kurtosis coefficient of the macro-
distribution for the given granular layer model, valid
for times t > ty:
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On examining expressions (2.7) we see that the
kurtosis coefficient Ex, which characterizes the de~
parture of the distribution from the normal law be-
comes small compared with unity after a time t > tg =
= max[s,q"’]- It may easily be seen that when the
condition Ex(t) < 1 is fulfilled itis only necessary to
retain the first term in the formula for p,(t). In order

to explain the meaning of the resulfs obtained we shall
write down the exact formula for the dispersion of the
macrodistribution of the model in question and exa-
mine its variation in time

pe(t) =+ g =29 (2.8)

In the beginning for t < [g(1 + o) ! the dispersion
increases with time as t/t;. This period corresponds
physically to the time when the additive has not yet
managed to penetrate into the stagnation zone. The
increase in the dispersion subsequently slows down;
for t > [q(1 + @)]™! the exponent in (2. 8) vanishes and
the asymptotic formula (2.7) results. The nature of
further variations of dispersion with time depends
strongly on the size of the parameter . If & < 1, then
ualt) =t/s ~ t/ty, i.e., the change in the dispersion fol-
lows practically the same law as for times which are
small. The picture for o > 1 is quite different. In this
case during an interval of time [g(1 + &)]™! «t « g1
the dispersion remains constant and equal to {(gs) 1,
after which for t > q~! it begins to increase very
slowly, compared with the initial increase, according
to the law t/s. The results given above are illustrated
graphically in a figure in which the dispersion of the
macro-distribution is given as a function of time.

For o > 1 during a period tg > t > t; correspond-
ing to a constant dispersion the additive, on falling
into stagnation zones of very large volume, experi-
ences practically no transverse displacement. After
the passage of a time tg a dynamical equilibrium is
established between the cells and the stagnation zones
and they operate together like a single cell of very
large capacity.

2.3°. Ideal mixing cells with diffusion stagnation
zones (model 3). We shall now consider stagnation
zones in which the transport velocity of the additive
can no longer be taken to be infinite. In this case the
concentration of marker within a stagnation zone will
depend not only on time but also on the spatial coordi-
nates, and will satisfy the equation of molecular dif-
fusion. We shall take the stagnation zone to be a flat
layer of thickness &, and let the x-axis lie so that x=0 is
on the boundary between the stagnation zone and the
free volume, and x = 6 is on the "sealed" boundary.
Then the equation for ¢, and its initial and boundary
conditions assume the form

Cy (0, t) =0 (O, t)
e (2, 0)=0. (2.9)

d%cy deo dcy

F T Bz |,_g ’
On solving Eq. (2.9) together with (2.3) we find g(p)
and A (p) corresponding to the given model

A(p) = pto +-est, V Dp '“h]/‘%5=pto (1+°°tgxh)
(a=esd, n=0) %)

Here ¢ is the ratio of the specific volumes of the
stagnation zone and the free volume. The character-
istic time t; which must elapse before the asymptotic
formulas (1.2) can be employed is determined from
the solution of the transcendental equation

(2.10)
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For A (p) determined from formula (2.10) we have
2
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Formulas (2.12) coincide formally with formulas (2.6), apart from
numerical coefficients, if we take tq equal to q-1. Consequently we
may immediately conclude that tg = max [s, t4], and also that when
the condition t > tg is fulfilled the dispersion is equal to t/s. It should
be stressed that in spite of the fact that formulas (2. 6) and (2. 12) are
formally the same, the models which lead to these formulas are fun-
damentally different. This difference is particularly apparent for o >
> 1, In the latter case, model 3 cannot lead to a function of time for
which there exists a time interval with a constant dispersion.

2.4°. Ideal mixing cells with diffusive stagnation

zones having a finite exchange rate between the free
volume and the stagnation zone (model 4). When there
is a finite rate of exchange between the free volume of
the cell and the stagnation zone the boundary condition
must be changed to
I deg

T=D—b?=k(02—cl)

for =0, (2.13)

Here k is the exchange coefficient. Allowing for
(2.13) we have

(2.14)
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(The Biot number B = ké/D.)

It is not difficult to see that (2.14) contains formulas
(2.5) and (2.10) as limiting cases. In order to obtain
(2.10) it is necessary to pass to the limit k — « in
(2.14). Formula (2.5) corresponding to stagnation zones
of ideal mixing is obtained from the general formula in
the limit when D — =, while in this case the parame-
ter q of model 2 turns out to be equal to k/5.

The zeros of the function A(p) are found by solving
the transcendental equation

A —Bhctgh —oB =0, (2.15)
which is a generalization of Eq. (2.11) of model 3. The
characteristic time t; is connected with the root A, of
Eq. (2.15) having the smallest modulus, by the relation
t=ty/ A{, similar to that which was obtained for model
3. However, as distinct from the latter case, A; now
depends on the value of the parameter B and in the
present case it is impossible to draw the conclusion
that A; ~ 1 for all values of B.

When Eq. (2.15) is examined we see that the root
A, can be small compared with unity only when the
following conditions are fulfilled simultaneously:

B, aB<1. (2.16)

If conditions (2.18) are fulfilled then the time t;
(much greater than ty) is determined by the same ex-
pression as was obtained for model 2. Thus fulfilment

of inequalities (2.16) is an indispensable condition

for the model of ideal mixing cells with stagnation
zones tobe applicable, Inthe case in which atleast one of
inequalities (2.16) is not fulfilled, the root A; will
be of the order unity, and the time t; ~ tq. Using for-
mula (2.14) we have

o 2(B +3)

d1=8=to(1+d),dz=1+a8td 3B )

g — T%"_‘? st? [215— + (%—3)2] ) (2.17)
It is not difficult to see that for B > 1 expressions
(2.17) pass to those of (2.12), and for B < 1 to those of
(2.6). From this it follows in particular that if the
model of ideal mixing cells with stagnation zones is to
be used then conditions (2.16) are not only necessary
but also sufficient. The condition of applicability for
model 3 is the inequality B > 1. If B ~ 1, then we
must use the general formulas (2.17). Clearly B = gtg,
and so in the general case of arbitrary values of B the
time for establishing a normal distribution is deter-
mined by the largest of the quantities s, tg, gL

3. PHYSICAL INTERPRETATION OF THE RESULTS

The outline which has been given is exceedingly
general and can be applied to the analysis of transport
processes of both matter and heat. In what follows we
shall consider a series of specific processes.

3.1°. The transport of matter in a layer of nonpor-
ous particles. Here the regions close to the surface
of the solid particles are stagnation zones where tur-
bulent pulsations are damped and the transport of
matter comes about only by means of molecular diffu-
sion. A flat diffusive boundary layer at a hard surface
[4] (of thickness 6, much less than the grain parameter
1) constitutes such a stagnation zone. For a diffusion
layer the quantity ¢ is the same as the specific sur-
face of the hard particles and in order of magnitude is
equal to 7=!. The quantity € =1, so that « ~ 6/ < 1.
There is no resistance at the boundary of the free vol-
ume and the stagnation zone; thus k = ® and B = =,
From this it follows immediately that the given process
is described by model 3. Inaccordance with the results
of 12.3°, the time for establishing a normal distribu-
tion is determined by the largest of the quantities s
and t3. Let us compare these quantities:

tss = 63 Dt, ~ RP|N? ~ R-02p13 | (3.1)

where N = 6/] is the Nusselt diffusion number and

P = /D is the Prandtl diffusion number. In the esti-
mate which has just been made the empirical function
N(R, P) for a granular layer [5] has been used; we
shall use this function in the following estimates also.
It follows from (3.1) that the ratio ty/s ~ 1 for gas
fluxes and td/s ~ 10 for liquid fluxes; there appears
to be practically no dependence on the Reynolds num-
ber. Clearly the ratio ty/s determines the number of
cells ng which the stream front traverses before a
normal distribution is established in the process of
transverse diffusion. We note that in gases a normal
distribution is established as rapidly as if stagnation
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zones were not present (model 1), and in liquids
somewhat more slowly.

Another stagnation zone in a layer of nonporous
particles is the region close to the point where the
granules make contact [6]; this region is far from be-
ing flat. In a layer of spherical granules its border
with the free volume of a cell is the side areaofa cyl-
inder of height 5y, equal to the thicknes of the viscous
sublayer , and of radius (5¢7)¥? sothat o ~ 6%/21‘5/2.
The number of stagnation zones of this type which
occur for a single cell is determined by the pack-
ing structure of the layer. Diffusion into the inte-
rior of such a stagnation zone is very difficult, and as
was shown in paper [6] which dealt with longitudinal
mixing in a granular layer, the influence of these
zones on the erosion of the marker of neutral additive
is somewhat stronger than for the stagnation zones
close to the surface of the particles. The characteris-
tic function for cells with stagnation zones close to the
points where the grains make confact was obtained in
paper [6]:

I(Vrly) 2

-1
g(P)={1+Pt>+£Gto l/ Dp [W— V—}wﬁ—d:{} . (3.2)

It may easily be shown that apart from numerical
coefficients, results for this model may be obtained
with the function (2.14) corresponding to model 3, if
we set

6= VL @ = (5 .

In this case
ny=1t5/s~ 18,/ Dty ~RP"|N~R™P.  (3.3)

Here the difference between a liquid and a gas ap-
pears much more markedly than in (3.1). It follows
from (3.3) that if the stagnation zones close to the
points of contact do not play a notable part for gases,
then for liguid streams a normal distribution is ap-
proached much more slowly and it is established only
after the front of the stream has traversed a large
number of cells n > ng > 1. In this case if the number
of cells along the layer is not very large (ng ng), a
normal distribution may not be established at all dur-
ing the time that the front of the stream traverses the
layer.

3.2°. The transport of matter in a layer of porous
particles. Here the porous granule itself is a stagna-
tion zone; the effect of the stagnation zones treated
previously is negligibly small compared with the zone
considered here. Since diffusion in a porous granule
proceeds comparatively slowly, matter does not man-
age to penetrate deeply into the granule, and the geo-
metry of the stagnation zone may be taken to be plane
as before. It is now necessary to interpret D as the
effective diffusion coefficient in a porous particle, and
6 may be taken to be equal to its hydraulic radius. The
exchange coefficient k is equal to the coefficient of
mass transfer to the external surface of the granule.
Straightforward estimates show [7] that in this case
B > 1, so that the system under consideration may be
described by model 3. The ratio of the specific vol-

umes of the stagnation zone and the free volume of a
porous particle is on the order of unity; on determining
the parameter o it follows that for the given process

@ ~ 1. An estimate of the number ng shows that

ng = tg /s = 82/Ds ~ ul/D ~ RP . (3.4)

It is clear from (3.4) that the effect of the stagna-
tion zones is considerable even for gaseous fluxes.

3.3°, Heat transfer in a granular layer. In heat
transfer solid particles also behave as stagnation
zones. As in the previous model 6 must be taken
to be the hydraulic radius of a granule; D is the
coefficient of thermal diffusivity of a solid particle.
In the present case the coefficient € is equal to
the ratio of the heat capacities per unit volume of
the hard sphere and the flux yp/ys. For gaseous fluxes
g > 1 and consequently ¢ > 1; in liquids normally
€ ~ 1 and @ ~ 1. The exchange coefficient is equal to
k = kt/'y » where k; is the coefficient of heat transfer
to the outer surface of the granule. In this case the
parameter B is equal to

B = kta/Xp"'NXs/'X.p~RO'GP1/SXS/X1) . (35)

Here N is the thermal Nusselt number, P is the
thermal Prandtl number, and xp and yg arethethermal
conductivities of the solid particles and the stream,
respectively. It follows from (3.5) that B may assume
very varied values; however, small values of B are
more characteristic for gaseous fluxes, and large
values of B for liquid fluxes. Depending on the magni-
tude of the parameter B the system is described by
one of the three models (2—4).

It should be noted that even though the thermal con-
ductivity of the hard particles is comparatively large
these act as before like stagnation zones. This comes
about as the result of the fact that the heat conduction
in the solid phase through the points of contact be-
tween the particles is very much inhibited [8]. Heat
conduction from cell to cell through a solid particle
also does not play a significant role, since

eh/u ~ N/RP ~ R-0iP-h<Z 1 (3.6)

In accordance with the general results obtained for
model 4, the time for establishing a normal distribu-
tion is determined by the largest of the quantities s,

150 q‘j. Correspondingly ng is determined by the
largest of the quantities
( o RP 4 RVPRL)
’ s 1+a’ qs 1o ¥ Bs *

In gas fluxes for moderate Reynolds numbers (R ~
~10% - 10% {tg/s € 1), andng may be considerably in
excess of unity only if B is small enough, i.e., in a
layer of particles having a high thermal conductivity.
In this case the curve for the dispersion of the macro-
distribution as a function of time may have a horizontal
part (see figure). In liquids, ty/s > 1, and so ng > 1
always. It has already been noted that for liguids,
small values of the Biot number are not characteristic,
so that the quantity tg/s is usually much larger than
all the others, and ng = ty/s.
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3.4°. Transfer of matter in a layer of nonporous
particles which adsorb the additive. At a certain stage
a surface of granules which adsorb the additive is a

#2

o</

7{’( 1+Ey

"stagnation zone." If the relation between the concen-
tration of matter at the surface and the surface con-
centration of adsorbed material is determined by
Henry's law with a constant a (having the dimensions
of length), then the process under consideration is
described by model 2, and we must set q =k/a, @ = oa
in the corresponding formulas.

Here k must be taken to be the coefficient of mass
transfer to the external surface of the granule. In ac-
cordance with the results of section 2.2°, the time
for establishing a normal distribution is determined
by the larger of the quantities s and a/k. The number
of cells ng in this case is equal to

a . a a
Ny = e e~
s ks k oa-+1 a1

R*p™s (3.7)

1t follows from formula (3.7) that the maximum
possible value of ng = u/k is obtained for a > 1. How-
ever, we must not forget that together with the adsorp-
tion mechanism of the trapping of material within a
cell, material is also trapped within a diffusion layer
(see §3.1°), which leads to a value ng ~ ud/kl, Com-
paring this quantity with (3.7), we see that the adsorp-
tion trapping mechanism is more effective than the

diffusion mechanism for @ > §. In the case of fairly
strong adsorption (@ >» ) the macrodistribution dis-
persion function will have a plateau (see figure) for
times I/k <t < g/k.
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